Experiment

INTERNATIONAL PHYSICS OLYMPIAD

Mass Measurement (10 points)

Write down the numbers 0 to 9 in the following table:

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Part A: Hooke's law and electromagnetic forces (2.4 points)
A. 1 (0.4 pt$)$

A. 2 (0.6 pt)

N	z / mm	I / A
0	12.8	0
1	12.2	0.103
2	11.6	0.213
3	11.1	0.323
4	10.7	0.423
5	10.2	0.524

Experiment

Ph m

A. 3 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.
$a=\frac{\Delta z}{\Delta N}=\frac{10.15-12.70}{5}=-0.51$
$a_{+}=\frac{10.20-12.60}{5}=-0.48$
$a_{-}=\frac{10.10-12.80}{5}=-0.54$
$\Delta a=\frac{-0.48-(-0.54)}{2}=0.03$
$a=-0.51 \pm 0.03 \mathrm{~mm}$

Experiment

A1-3
A. 4 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.
$b=\frac{I}{N}=\frac{0.53}{5}=0.106$
$b_{+}=\frac{0.55}{5}=0.110$
$b_{-}=\frac{0.505}{5}=0.101$
$\Delta b=\frac{0.110-0.101}{2}=0.005$
$b=0.106 \pm 0.005 \mathrm{~A}$

Experiment

INTERNATIONAL PHYSICS OLYMPIAD

Part B: Induced electromotive force (3.0 points)
B. 1 (0.2 pt)
$V=2 \pi f A B L$
B. 2 (0.5 pt$)$
$f_{\mathrm{B}}=15.85 \mathrm{~Hz}$

A / mm	V^{\prime} / V
0.5	0.024
1.0	0.048
1.5	0.071
2.0	0.099
2.5	0.146
3.0	

Experiment

A1-5
B. 3 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.
$c=\frac{V^{\prime}}{N}=\frac{0.147}{5}=0.049$
$c_{+}=\frac{0.150}{5}=0.050$
$c_{-}=\frac{0.144}{5}=0.048$
$\Delta c=\frac{0.050-0.048}{2}=0.001$
$c=0.049 \pm 0.001 \mathrm{~V} / \mathrm{mm}$

Experiment

INTERNATIONAL PHYSICS OLYMPIAD
B. 4 (0.4 pt)
$B L=\frac{V}{2 \pi A f_{\mathrm{B}}}=\frac{\sqrt{2} V^{\prime}}{2 \pi A f_{\mathrm{B}}}=\frac{\sqrt{2} c}{2 \pi f_{\mathrm{B}}}=\frac{\sqrt{2} \times 0.049}{2 \pi \times 15.85}=0.000696 \mathrm{Vs} / \mathrm{mm}=0.696 \mathrm{Vs} / \mathrm{m}$
$\Delta(B L)=B L \cdot \frac{\Delta c}{c}=0.696 \times \frac{0.001}{0.049}=0.014 \mathrm{Vs} / \mathrm{m}$
$B L=0.696 \pm 0.014 \mathrm{Vs} / \mathrm{m}$

B. 5 (1.2 pt)

$m=\frac{m g}{B L} \cdot \frac{B L}{g}=\frac{I}{N} \cdot \frac{V}{2 \pi A f_{\mathrm{B}}} \cdot \frac{1}{g}=b \frac{\sqrt{2} c}{2 \pi g f_{\mathrm{B}}}=0.106 \times \frac{\sqrt{2} \times 0.049}{2 \pi \times 9.80 \times 15.85}=0.0075 \mathrm{~kg}=7.5 \mathrm{~g}$
The principle of the Kibble balance (watt balance)
Mechanical power: $F v=N m g \cdot 2 \pi A f_{\text {B }}$
Electrical power: VI
$F v=V I$
$\Delta m=m \cdot \sqrt{\left(\frac{\Delta b}{b}\right)^{2}+\left(\frac{\Delta c}{c}\right)^{2}}=0.4 \mathrm{~g}$
$m=7.5 \pm 0.4 \mathrm{~g}$
$k=-\frac{m g}{a}=-\frac{7.5 \times 9.80}{-0.51}=144 \mathrm{~N} / \mathrm{m}$
$\Delta k=k \cdot \sqrt{\left(\frac{\Delta a}{a}\right)^{2}+\left(\frac{\Delta m}{m}\right)^{2}}=11 \mathrm{~N} / \mathrm{m}$
$k=144 \pm 11 \mathrm{~N} / \mathrm{m}$

Experiment

INTERNATIONAL PHYSICS OLYMPIAD

A1-7

Part C: Mass dependence of resonant frequency (2.3 points)

C. 1 (0.2 pt)
$f=\frac{1}{2 \pi} \sqrt{\frac{k^{\prime}}{M+N m}}$
C. 2 (0.5 pt)

N	f / Hz	$1 / f^{2} / \mathrm{s}^{2}$		
0	15.96	0.003926		
1	13.03	0.005390		
2	11.33	0.007790		
3	10.13	0.009745		
4	9.06	0.01218		
5	8.45	0.01401		

Experiment

C. 3 (1.0 pt)
(20.02

The additional quantities $1 / f^{2}$ are calculated in Table C.2. Then, $\frac{M}{k^{\prime}}$ and $\frac{m}{k^{\prime}}$ are obtained from the graph using the equation $\frac{1}{f^{2}}=(2 \pi)^{2}\left(\frac{M}{k^{\prime}}+\frac{m}{k^{\prime}} N\right)$.
$\frac{M}{k^{\prime}}=\frac{0.0039}{(2 \pi)^{2}}=9.88 \times 10^{-5} \mathrm{~s}^{2}$
$\frac{m}{k^{\prime}}=\frac{(0.0140-0.0039) / 5}{(2 \pi)^{2}}=5.12 \times 10^{-5} \mathrm{~s}^{2}$

Experiment

INTERNATIONAL PHYSICS OLYMPIAD

2023 TOKYO JAPAN
C. 4 (0.6 pt)
$\frac{M}{m}=\frac{M / k^{\prime}}{m / k^{\prime}}=\frac{9.88}{5.12}=1.93$
$\frac{M}{m}=1.93$
$M=\frac{M}{m} \cdot m=1.93 \times 0.0075=0.0145 \mathrm{~kg}$
$M=14.5 \mathrm{~g}$
$k^{\prime}=\frac{M}{M / k^{\prime}}=\frac{0.0145}{9.88 \times 10^{-5}}=147 \mathrm{~N} / \mathrm{m}$
$k^{\prime}=147 \mathrm{~N} / \mathrm{m}$

Experiment

Part D: Resonance characteristics (2.3 points)

D. 1 (0.4 pt)
$V_{\mathrm{AC}}^{\prime}=0.157 \mathrm{~V}$
$F_{\mathrm{AC}}=B L I_{\mathrm{AC}}=B L \times 0.106 \times \sqrt{2} V_{\mathrm{AC}}^{\prime}=0.696 \times 0.106 \times \sqrt{2} \times 0.157=0.0164 \mathrm{~N}$
$F_{\mathrm{AC}}=0.0164 \mathrm{~N}$
D. 2 (0.9 pt)

f / Hz	A / mm	$\left(f-f_{0}\right)^{2} / \mathrm{Hz}^{2}$	$1 / A^{2} / \mathrm{mm}^{-2}$
15.88	3.0	0.0064	0.111
15.79	3.0	0.0289	0.111
15.73	2.8	0.0529	0.128
15.61	2.1	0.1225	0.227
15.49	1.9	0.2209	0.277
15.34	1.2	0.3844	0.694
15.20	1.1	0.5776	0.826
16.02	2.7	0.0036	0.137
16.14	2.1	0.0324	0.227
16.24	2.0	0.0784	0.250
16.41	1.6	0.2025	0.391
16.60	1.1	0.4096	0.826
16.81	1.0	0.7225	1.000

Experiment

D. 2 (cont.)

Experiment

INTERNATIONAL PHYSICS OLYMPIAD

D. 3 (1.0 pt)

Reading from the graph D. 2
$f_{0}=15.83 \mathrm{~Hz}$
$A\left(f_{0}\right)=3.0 \mathrm{~mm}$
$\Delta f=\frac{15.14-15.56}{2}=0.29 \mathrm{~Hz}$
Calculaton using Eq.(4)
$M=\frac{F_{\mathrm{AC}}}{8 \pi^{2} f_{0} \Delta f A\left(f_{0}\right)}=\frac{0.0164}{8 \pi^{2} \times 15.83 \times 0.29 \times 0.003}=0.0151 \mathrm{~kg}$
$M=15.1 \mathrm{~g}$

An alternative way to find M

$\left(f-f_{0}\right)^{2}$ and $1 / A^{2}$ are calculated in Table D. 2 to use the linear relationship
$\frac{1}{A^{2}}=\left(\frac{8 \pi^{2} M f_{0}}{F_{\mathrm{AC}}}\right)^{2} \cdot\left[\left(f-f_{0}\right)^{2}+(\Delta f)^{2}\right]$.
$f_{0}=15.96 \mathrm{~Hz}$ obtained in C. 2 is used.
The slope is obtained from the graph of the additional quantities or the calculation $\left(\frac{8 \pi^{2} M f_{0}}{F_{\mathrm{AC}}}\right)^{2}=1.31 \mathrm{~mm}^{-2} \mathrm{~Hz}^{-2}=1.31 \times 10^{6} \mathrm{~m}^{-2} \mathrm{~Hz}^{-2}$.
$M=\sqrt{1.31 \times 10^{6}} \times \frac{F_{\mathrm{AC}}}{8 \pi^{2} f_{0}}=\sqrt{1.31 \times 10^{6}} \times \frac{0.0164}{8 \pi^{2} \times 15.96}=0.0149 \mathrm{~kg}$
$M=14.9 \mathrm{~g}$

